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Abstract
Following the discussion—in state-space language—presented in a preceding
paper, we work on the passage from the phase-space description of a degree of
freedom described by a finite number of states (without classical counterpart)
to one described by an infinite (and continuously labelled) number of states.
With this it is possible to relate an original Schwinger idea to the Pegg–Barnett
approach to the phase problem. In phase-space language, this discussion shows
that one can obtain the Weyl–Wigner formalism, for both Cartesian and angular
coordinates, as limiting elements of the discrete phase-space formalism.

PACS numbers: 03.65.−w, 03.65.Bz, 03.65.Ca

1. Introduction

In a previous work it was shown that the usual quantum descriptions of Cartesian and angular
coordinates in state space can both be seen as different limiting cases of the Schwinger
programme of treating quantum discrete variables [1]. The limiting process involved
reproduces the Pegg–Barnett (PB) approach to phase variables in the case of angle/angular
momentum variables [2]. The purpose of this work is to translate that discussion into a
phase-space point of view, which might be a way to unify under the same structure three
apparently different formalisms, each one adapted to one specific kind of quantum variable,
namely Cartesian, angular and discrete. In doing so, we again relate the PB and Schwinger
approaches, now through the phase-space representatives of number and phase operators.

The phase-space picture is a well established picture of quantum mechanics [3–10],
specially if one deals with degrees of freedom with classical counterparts, a situation in
which the Weyl–Wigner formalism is the undisputed approach. Nevertheless, to cope with
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variables such as rotation angle and angular momentum, the formalism had to be adapted
in order to account for the inherent periodicity involved. This was accomplished in the late
1970s [11,12] and developed to its full extent in [13]. However, when one deals with degrees
of freedom without classical counterparts, the formulations discussed above are not applicable.
In these cases, there is a formalism completely capable of dealing with the peculiarities of the
finite/discrete character of the variables [14–16], in much the same spirit as the Weyl–Wigner
formalism itself. Following the procedure shown in [1] which led from discrete variables to
the cases with classical counterparts, we show that the usual Weyl–Wigner formalism and also
its rotation angle–angular momentum version naturally emerges from the discrete phase-space
formalism. In addition, some properties of the discrete Wigner function are also discussed.
From a more rigorous mathematical point of view, these limiting processes presented in this
context have been also discussed in [17–19].

This paper is organized as follows. In section 2 we briefly present the main ideas of
the discrete phase-space representation, drawing attention to some properties of the discrete
Wigner function, while in section 3 we discuss the limiting processes which lead the original
operator bases to the well known Weyl–Wigner continuous case as well as the particular case
of rotations. Finally, section 4 is devoted to the conclusions.

2. Discrete phase space

As has already been shown [14–16], a discrete phase-space representation of a quantum
mechanical degree of freedom which is characterized by a finite number of states, and therefore
with no classical counterpart, can be established if we are given a basis in the corresponding
operator space. One such basis was introduced by Schwinger in his seminal paper on this
subject [20], constructing it from some particular unitary cyclically shifting pairs of operators,
and another has been proposed that basically considers the double Fourier transform of that
of Schwinger [14]. As previously shown, once we are provided with such an operator basis,
it is a direct task to obtain the discrete phase-space representatives of the operators acting on
the state space from which we started. To briefly summarize these results let us consider the
operator basis and recall its main properties.

The discrete phase-space formalism is set over the basis elements

G(j, l) = 1

N

h∑
m,n=−h

UmV n exp

(
iπmn

N

)
exp

[
−2π i

N
(mj + nl)

]
exp[iπφ(m + h, n + h; N)],

(1)

where (j, l) ∈ [−h, h], h = N−1
2 (for simplicity, odd N values will be considered, as even

values only require only a little more care and a heavier notation). The modular phase
φ(m, n; N), included to warrant an explicit mod N symmetry in the summing indices of
the basis, is given by

φ(m, n; N) = NIN
m IN

n − mIN
n − nIN

m (2)

with

IN
k =

[
k

N

]
(3)

standing for the integral part of k with respect to N . The Us and V s are the Schwinger unitary
operators [20], briefly reviewed in [1].
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As a basis, the set (1) can be used to represent all linear operators acting on the given
N -dimensional state space; this can be accomplished by a direct decomposition

Ô =
N−1∑

m,n=0

O(m, n)G(m, n), (4)

where the coefficient, O(m, n), that gives rise to the representative of the operator Ô in the
discrete phase space [14], is given by

O(m, n) = 1

N
Tr[G(m, n)Ô], (5)

where we used the fact that G(m, n) is self-adjoint.
The basic properties of the basis, equation (1), are:

(1) Tr[G(m, n)] = 1; (6)

(2) Tr[G†(m, n)G(r, s)] = Nδ[N ]
m,rδ

[N ]
n,s ; (7)

(3) [Tr G†(m, n)G(u, v)G(r, s)] =
h∑

a,b,c,d=−h

1

N2
exp

[
iπ

N
(bc − ad)

]

× exp[−iπφ(a + c + h, b + d + h; N)]

× exp

{
2π i

N
[a(m − u) + b(n − v) + c(m − r) + d(n − s)]

}
, (8)

where the last expression is important for the mapping of products of operators [21]. Particular
interest resides in the mapping of the commutator of two operators, for then it is possible to
study, for example, the time evolution of the density operator in the von Neumann–Liouville
equation [16, 22].

2.1. The discrete Wigner function

The phase-space representative of the density operator in the discrete approach is also referred
to as the (discrete) Wigner function [14,23,24]. If the (pure) state of a given system is described
by

|ψ〉 =
∑

n

ψn|un〉, (9)

where {|un〉} is the (complete and orthonormal) set of eigenvectors of the Schwinger operator
U , then the use of equation (5) leads to a Wigner function of the form

ρw(m, n) = 1

N2

∑
j,l,k

ψ∗
k ψk−l exp

[
2π i

N

(
jk − j l

2
− mj − nl

)]
, (10)

or

ρw(m, n) = 1

N2

∑
l,k

ψ∗
k ψk−l

sin[π(k − m − l/2)]

sin[ π
N

(k − m − l/2)]
exp

[
−2πi

N
nl

]
.

Its main properties are, in direct analogy with the usual continuous Wigner function:

(1) It is a real function, as follows from the Hermicity of the basis elements.
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(2) Summing it over each one of its indices gives the probability distribution in the other. For
example,

∑
n

ρw(m, n) =
∑

n

1

N2

∑
j,l,k

ψ∗
k ψk−l exp

[
2π i

N

(
jk − j l

2
− mj − nl

)]
, (11)

such that
∑

n

ρw(m, n) = 1

N

∑
j,l,k

ψ∗
k ψk−l exp

[
2π i

N

(
jk − j l

2
− mj

)]
δ

[N ]
l,0 , (12)

and so ∑
n

ρw(m, n) = |ψm|2. (13)

In the same way, the summation over {m} would lead to the probability distribution
associated with the eigenstates of the Schwinger operator V .

(3) It must be different from zero at at least N sites in the discrete phase space. Writing it as

ρw(m, n) = 1

N2

∑
j,l

exp

[
−2π i

N
(mj + nl)

] ∑
k

ψ∗
k ψk−l exp

[
2π i

N

(
jk − j l

2

)]
, (14)

it is clear that it is the double Fourier transform of the quantity ρs(j, l),

ρs(j, l) =
∑

k

ψ∗
k ψk−l exp

[
2π i

N

(
jk − j l

2

)]
, (15)

which, in its turn, can be seen as the inner product of two vectors {ψk exp[− 2π i
N

jk]}
and {ψk−l exp[−π i

N
jl]} of unit length. By the Schwarz inequality it is clear than that

|ρs(j, l)|2 � 1, and from properties of the discrete Fourier transform one can also conclude
that

(ρw(m, n))2 � 1. (16)

Now, using the property [16]

Tr[Ô1Ô2] = 1

N

∑
m,n

O1(m, n)O2(m, n), (17)

then

Tr[(|ψ〉〈ψ |)2] = 1

N

∑
m,n

(ρw(m, n))2, (18)

which leads to

1 = 1

N

∑
m,n

(ρw(m, n))2, (19)

and considering inequality (16) we conclude that the discrete Wigner function must be
different from zero at N sites at least in the discrete phase space.

3. The continuum limit in phase space

The continuum limit of an operator representative in phase space is to be seen as its behaviour
in the infinite-dimensional/continuum limit. We now follow a procedure similar to that of [1].
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3.1. Cartesian coordinates

We start from the discrete space operator basis elements,

G(j, l) = 1

N

h∑
m,n=−h

UmV n exp

(
iπmn

N

)
exp

[
−2π i

N
(mj + nl)

]
, (20)

where we omit the modular phase since we shall restrict ourselves to sums in the interval
[−h, h]. Then we introduce the scaling parameter

ε =
√

2π

N
, (21)

which will become infinitesimal as N → ∞. We also introduce two Hermitian operators
{P, Q},

P =
N−1

2∑
j=− N−1

2

jεδp0|vj 〉〈vj | Q =
N−1

2∑
j ′=− N−1

2

j ′ε2−δq0|uj ′ 〉〈uj ′ |, (22)

constructed from the projectors of the eigenstates of U and V . Again, δ is a free parameter
which might assume any value in the open interval (0, 2). {p0, q0} are real parameters that
might carry units of momentum and position, respectively, and εδp0 and ε2−δq0 are the distance
between successive eigenvalues of the P andQoperators. With the help of these, we can rewrite
the Schwinger operators as

V = exp

[
iε2−δP

p0

]
U = exp

[
iεδQ

q0

]
. (23)

and perform the change of variables

q = q0ε
2−δj p = p0ε

δl

u = p0ε
δm v = −q0ε

2−δn.
(24)

With this, we arrive at new operator basis elements that do not explicitly depend on δ; however,
at the same time, the operators U and V carry a particular ε dependence, defined by the
particular choice of δ, namely

G(p, q) = 1

q0p0ε2N

h∑
u,v=−h

�u�v exp

[
iuQ

p0q0

]
exp

[
− ivP

p0q0

]
exp

(
− i

2p0q0
uv

)

× exp

[
− i

p0q0
(qu − pv)

]
. (25)

If we take the limit N → ∞, it is clear that we can consider �u → du and �v → dv, yielding

G(p, q) = 1

2πq0p0

∫ ∞

−∞

∫ ∞

−∞
du dv exp

[
iu(Q − q − v/2)

p0q0

]
exp

[
− iv(P − p)

p0q0

]
. (26)

As we know from [1] that in this limit we recover the usual results for position and momentum
once p0q0 = h̄, we use the identity

|q〉〈q| = 1

2πh̄

∫ ∞

−∞
dx exp

[
ix(Q − q)

h̄

]
, (27)

and obtain

G(p, q) = 1

2πh̄

∫ ∞

−∞
dv |q + v/2〉〈q + v/2| exp

[
− iv(P − p)

h̄

]
(28)

G(p, q) = 1

2πh̄

∫ ∞

−∞
dv |q + v/2〉〈q − v/2| exp

[
ivp

h̄

]
, (29)
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which is exactly the form of the Weyl–Wigner basis elements �(p, q). It is interesting to see
that, as in the state-space description, the parameter δ does not affect the final result since, in
this case (any δ ∈ (0, 2)), the basis elements do not depend on it at all, although U and V

do. It is now a trivial matter to prove that the decomposition coefficients are well behaved
in the limit and also go to the Weyl–Wigner coefficients. From this we see that the whole
mapping scheme is recovered. This result has already been achieved for the particular case
δ = 1 in [16], where the limiting process which leads to the Moyal bracket was also discussed.
Moreover, it has to be stressed that, starting from the continuous family of unitary operators,
equation (23), and realizing the independence of the basis elements from δ, the Weyl–Wigner
basis elements are overdetermined in the limiting process, since, for any δ ∈ (0, 2) pair of
operators, we always obtain the same final expression. This means that for the continuous
family of unitary operators (except for δ = 0 or 2), as proposed, the continuum limit is the
Weyl–Wigner operator basis.

From these results one immediately concludes that the discrete Wigner function has the
ordinary Wigner function as its continuum limit, in the sense discussed above. As we have
already stated, most properties of the usual Wigner function are originally present in the discrete
one, and emerge as the continuum limit of the latter.

In the discrete case we have seen that the Wigner function must be different from zero at
N sites at least in phase space. It is obvious that the same procedure which led to this result
would lead to the well known property of the usual Wigner function that it must be different
from zero in a region of the phase space of area at least h̄. This discussion illustrates somewhat
quantitatively how the quantum effects become more and more drastic as the dimensionality
N decreases.

3.2. Angular coordinates

Following our analogy with what was done in [1], we now choose the parameter δ in the
extreme situation δ = 0. We expect now to obtain a phase-space formalism which is consistent
with angular coordinates. We start again from our discrete operator space basis elements,
equation (20),

G(j ′, l′) = 1

N

h∑
m′,n′=−h

Um′
V n′

exp

(
iπm′n′

N

)
exp

[
−2π i

N
(m′j ′ + n′l′)

]
.

Rewriting the Schwinger operators as above, but with δ = 0, we now would have

M =
N−1

2∑
j=− N−1

2

jm0|vj 〉〈vj | and � =
N−1

2∑
j ′=− N−1

2

j ′ε2θ0|uj ′ 〉〈uj ′ |, (30)

leading to

V = exp

[
iε2M

m0

]
and U = exp

[
i�

θ0

]
, (31)

so that only V now depends on ε, and changing the variables as

θ = θ0ε
2j ′ l = l0l

′

m = m0m
′ α = −θ0ε

2n′ (32)

we have for the basis elements

G(θ, l) = − 1

2πθ0

m0h∑
m=−m0h

(−π+ π
N

)θ0∑
α=(π− π

N
)θ0

�α exp

[
im�

m0θ0

]
exp

[
− iαM

m0θ0

]

× exp

(
− imα

2m0θ0

)
exp

[
− i

m0θ0
(mθ − lα)

]
. (33)
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Performing again the limit N → ∞, the angle variables become continuous and we have

G(θ, l) = 1

2πθ0

∞∑
m=−∞

∫ πθ0

−πθ0

dα exp

[
im

(
� − θ − α

2

)]
exp

[
− iα(M − l)

m0θ0

]
. (34)

The sum over m is the projector in angle space (θ0 is set to unity, so the angle units are radians,
and m0θ0 is set to h̄), and

G(θ, l) = 1

2π

∫ π

−π

dα

∣∣∣∣θ +
α

2

〉〈
θ +

α

2

∣∣∣∣ exp

[
− iα(M − l)

h̄

]
, (35)

so that, with the use of equation (30), we achieve the result

G(θ, l) = 1

2π

∫ π

−π

dα

∣∣∣∣θ +
α

2

〉〈
θ − α

2

∣∣∣∣ exp

[
ilα

h̄

]
, (36)

that is precisely the result of [12, 13]. We remark that we have no need to worry about the
periodicities in the angle variable as our angular states are bounded to the [−π, π) interval
by definition, and our notation has mod N periodicity (mod 2π in the continuum limit) by
construction [1]. It would seem at first glance that the continuum interval is [−π, π ], but this
is not the case, as it can be seen from the original discrete results that the states in the extremes
of the interval are not the same. We understand that, once the basis elements are recovered,
the whole mapping procedure is recovered.

Again, all properties of the angular Wigner function can be obtained from its discrete
counterpart by the limiting process above. It must be stated however that in many cases it turns
out to be easier to work with the discrete rather than the angular case. That is particularly true
in the obtention of the angular counterpart of equation (16), which in the angular case does not
lead to a condition involving a minimal area unit in phase space due to the very nature of the
angular phase space.

It is interesting to note that what were considered to be conditions for the existence of the
Wigner function in [12, 13] are derived as properties of it in the present scheme.

3.3. Mapping of the Pegg–Barnett operators

The number and phase operators of PB can be immediately mapped on the discrete phase space.
In fact, we exactly reproduce the PB scheme if we rename the M operator of equation (31) as
N and include a reference angle in the definition of � (which must be an integer multiple of
2π
N

). The phase-space representatives of these operators, through direct use of equation (5),
are seen to be

N(m, n) = n, �(m, n) = θref +
2π

N
m, (37)

with obvious continuum limits.

4. Conclusions

Motivated by the results of part I, we looked for a phase-space discussion of the limits which
connect discrete, angular and Cartesian coordinates. It then became clear that the Weyl–Wigner
formalism, in both position–momentum and angle–angular momentum cases, can be seen as
limiting elements of a discrete phase-space formalism. The angle–angular momentum case is
seen to be in deep connection with the PB approach to the phase problem, while the Weyl–
Wigner operator basis is reobtained for all the cases for which the parameter governing the
unitary operators is different from zero; in this sense the Weyl–Wigner basis is overdetermined
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in the limiting process. An interesting by-product of this discussion is the analysis of the
Wigner function, which reproduced the conditions imposed on the angular Wigner function
in [12, 13].

With all this in mind, one is compelled to regard this as a kind of standard, or rather
‘natural’ approach to phase space in quantum mechanics. The basic feature that pertains to all
three versions of the formalism is that one constructs a basis in operator space from the Fourier
transform of the shifting operators. A one-to-one correspondence then ensures the existence
of a mapping between abstract operators and functions in phase space.
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